Microtúbulos

Comparte en:

Los microtúbulos son los principales componentes del citoesqueleto de las células eucariotas. Pueden encontrarse dispersos por todo el citoplasma o bien formar estructuras estables como cilios, flagelos y centriolos.

Estructura de los microtúbulos

Los microtúbulos están formados por moléculas de tubilina, cada una de las cuales es un dímero que consta de dos proteínas globulares, llamadas α-tubulina y β-tubulina. Los dímeros de tubulina se unen formando un protofilamento. Un microtúbulo consta de 13 protofilamentos paralelos que forman un cilindro hueco.

Una importante característica de los microtúbulos es su polaridad. La tubulina polimeriza por adición de dímeros en uno o ambos extremos del microtúbulo. La adición es por unión cabeza con cola, en la formación de los protofilamentos. Así, se forman filas sesgadas de monómeros de α-tubulina y β-tubulina en la pared, lo que provoca una polaridad global al microtúbulo. Debido a que todos los protofilamentos de un microtúbulo tienen la misma orientación, un extremo está compuesto por un anillo de α-tubulina (denominado extremo -) y, el opuesto, por un anillo de β-tubulina (denominado extremo +).

Estructura de un microtúbulo
Estructura de un microtúbulo

Asociadas a los microtúbulos hay numerosas proteínas. Algunas actúan estabilizando los microtúbulos y permitiendo su unión a otros componentes celulares. Otras, denominadas proteínas motoras, utilizan la energía del ATP para desplazar orgánulos a lo largo de los microtúbulos.

Los microtúbulos están continuamente polimerizando y despolimerizando, fundamentalmente en su extremo más. Una vez se ha producido el comienzo de la formación de un microtúbulo la incorporación de nuevos dímeros de tubulina hace que el microtúbulo crezca en longitud. Este crecimiento a veces se detiene repentinamente y el microtúbulo comienza a despolimerizarse, llegando a veces incluso a desaparecer, o más frecuentemente reinicia el proceso de polimerización. A estas alternancias entre polimerización y despolimerización es a lo que se llama inestabilidad dinámica.

Inestabilidad dinámica

En este esquema se representan los dos estados en que se encuentran los dímeros de tubulina en sus formas unidas a GTP o unidas a GDP. En el citosol se da la conversión de dímero-GDP en dímero-GTP, mientras que en el micróbulo ocurre el proceso contrario en el denominado frente de hidrólisis. Un microtúbulo despolimeriza cuando los dímeros-GDP se encuentran ocupando el extremo más, mientras que polimeriza cuando en el extremo más está formado por los dímeros-GTP, formando el denominado casquete de GTPs.

Los dímeros de tubulina libres en el citoplasma se encuentran unidos a una molécula de GTP. Cuando un dímero se une a un microtúbulo en crecimiento se produce una hidrólisis de GTP a GDP. Si la velocidad con la que se produce la unión de nuevos dímeros es mayor que la de hidrólisis del GTP siempre habrá un conjunto de dímeros en el extremo más que tendrán GTP unido. A este conjunto de dímeros-GTP polimerizados se le llama casquete de GTPs. Ésta es una estructura que hace más estable el extremo más. Bajo estas condiciones el microtúbulo crecerá en longitud. La velocidad de polimerización, sin embargo, depende de las condiciones del entorno citosólico en las que se encuentre el extremo más del microtúbulo en crecimiento. Si la velocidad de polimerización es ralentizada, la velocidad de hidrólisis de GTPs alcanza y supera a la de polimerización. Ello implica que llegará un momento en el que el extremo más no habrá dímeros de tubulina-GTP, sino dímeros de tubulina-GDP, los cuales tienen una adhesión inestable entre ellos cuando se encuentran formando parte del extremo del microtúbulo. Esto provoca una despolimerización masiva y la liberación de los dímeros de tubulina-GDP. Los dímeros de tubilina-GDP que quedan libres son convertidos rápidamente en dímeros de tubulina-GTP y por tanto pueden volver a unirse al extremo más de otro microtúbulo en crecimiento.

Microtúbulo en crecimiento
Microtúbulo en crecimiento. En este esquema se representan los dos estados en que se encuentran los dímeros de tubulina en sus formas unidas a GTP o unidas a GDP. En el citosol se da la conversión de dímero-GDP en dímero-GTP, mientras que en el micróbulo ocurre el proceso contrario en el denominado frente de hidrólisis. Un microtúbulo despolimeriza cuando los dímeros-GDP se encuentran ocupando el extremo más, mientras que polimeriza cuando en el extremo más está formado por los dímeros-GTP, formando el denominado casquete de GTPs.

Centros organizadores de microtúbulos. El centrosoma

La concentración de dímeros de tubulina en el citosol no es suficiente para la formación espontánea de microtúbulos. Por ello existen los MTOCs (microtubule organizing centers), que son centros organizadores de microtúbulos. Estos son los lugares donde comienza la polimerización de un nuevo microtúbulo y donde suelen estar anclados sus extremos menos. El principal MTOC en las células animales es el centrosoma, el cual controla el número, localización y orientación de los microtúbulos en el citoplasma. Hay un centrosoma por célula, cuando ésta se encuentra en la fase G1 o G0 del ciclo celular, y se suele localizar cerca del núcleo. El centrosoma se compone de dos compartimentos: uno central formado por un par de centriolos dispuestos de forma ortogonal y otro periférico formado por material proteico denominado material pericentriolar. Los centriolos son estructuras cilíndricas formadas por 9 tripletes de microtúbulos que constituyen sus paredes.

El sistema de microtúbulos de las células animales se forma principalmente a partir del centrosoma, que contiene un par de centriolos dispuestos perpendicularmente rodeados por el material pericentriolar. En ella se encuentran los anillos de γ-tubulina a partir de los cuales polimerizan los microtúbulos.

En el material pericentriolar hay numerosas moléculas entre las que se encuentra la γ-tubulina, las cuales forman unos anillos denominados anillos de γ-tubulina. Estos anillos actúan como molde y lugar de nucleación y anclaje de nuevos microtúbulos. Los centriolos, sin embargo, no desempeñan papel alguno en la polimerización y dirección de los microtúbulos, excepto en sus apéndices, que son prolongaciones proteicas ancladas a los centriolos. La misión de los centriolos es todavía un misterio puesto que las células vegetales carecen de ellos y no por eso dejan de dividirse u orientar sus microtúbulos. Los centriolos sí son similares a los corpúsculos basales, estructuras que están en la base de cilios y flagelos desde los cuales polimerizan los microtúbulos que forman su armazón. Las células vegetales, al carecer de centriolos, no forman centrosomas típicos como en las células vegetales, pero sí anillos de γ-tubulina dispersos por el citoplasma o asociados a la envuelta nuclear. En condiciones experimentales se pueden polimerizar microtúbulos de forma espontánea sin presencia de anillos γ-tubulina cuando se coloca una gran cantidad de α- y β-tubulina en solución, pero en la célula tales concentraciones son difícilmente alcanzables.

Centrosoma
Centrosoma. El sistema de microtúbulos de las células animales se forma principalmente a partir del centrosoma, que contiene un par de centriolos dispuestos perpendicularmente rodeados por el material pericentriolar. En ella se encuentran los anillos de γ-tubulina a partir de los cuales polimerizan los microtúbulos.

El centrosoma no sólo participa en la polimerización de los microtúbulos sino que también es importante en la regulación del ciclo celular por la presencia en el material pericentriolar de numerosas proteínas que afectan al avance del ciclo celular y por la organización del huso mitótico. La duplicación de los centrosomas antes de llegar a la mitosis es fundamental para producir dos células hijas con "buena salud". Relacionado con esta actividad se ha implicado al centrosoma en el cáncer puesto que la mayoría de las células tumorales tienen centrosomas supernumerarios, lo que implica husos mitóticos multipolares que pueden llevar a aneuploidías.

Funciones de los microtúbulos

Entre las funciones de los microtúbulos destacan las siguientes.

  • Son los principales elementos estructurales y generadores del movimiento de los cilios y flagelos. Los cilios y flagelos son estructuras que se proyectan desde las células, contienen microtúbulos y están rodeados de membrana plasmática. Las células utilizan estos apéndices para desplazarse, para remover el medio que les rodea o como estructuras sensoriales. Los cilios son más cortos que los flagelos, son más numerosos y se mueven de una manera en la que propelen el líquido en una dirección paralela a la superficie de la célula. Los flaglelos mueven el líquido que les rodea en una dirección perpendicular a la superficie de la célula.

    Los cilios y los flagelos son estructuras complejas con más de 250 proteínas diferentes. Ambos contienen una estructura central de microtúbulos llamada axonema, rodeada por membrana plasmática. Un axonema consta de 9 pares de microtúbulos exteriores que rodean a un par central. A esta disposición se la conoce como 9x2 + 2. Esta disposición se mantiene gracias a un entramado de conexiones proteicas internas. El axonema crece a partir del cuerpo basal, que tiene la misma estructura que los centriolos, es decir, está formado por 9 tripletes de microtúbulos formando un tubo hueco. Las parejas de microtúbulos externos del axonema están conectadas entre sí por una proteína denominada nexina y por radios proteicos a un anillo central que encierra al par central de microtúbulos. En los dobletes externos aparece una proteína motora asociada llamada dineína, implicada en el movimiento de los cilios y de los flagelos. La movilidad se produce por el deslizamiento de unas parejas de microtúbulos externos respecto a otras, lo que da como resultado que la estructura se curve.

  • Dirigen el transporte de orgánulos en el citoplasma, ya que actúan como guías a lo largo de las cuales pueden desplazarse vesículas y otros orgánulos. Se ha observado que las mitocondrias se desplazan por el citoplasma asociadas a los microtúbulos. En las neuronas el transporte axonal también implica los microtúbulos; pequeñas vesículas se mueven rápidamente por el axón en ambas direcciones a lo largo de los microtúbulos.

    Los microtúbulos son relativamente inertes en cuanto que no interaccionan directamente con los orgánulos. Los desplazamientos de orgánulos son producidos por una serie de proteínas especiales llamadas proteínas motoras. Estas proteínas pertenecen a dos familias: quinesinas y dineínas, las cuales se desplazan por el microtúbulo en direcciones opuestas: las quinesinas hacia el extremo más y las dineínas hacia el extremo menos. Tanto unas como otras tienen dos estructuras globulares y una cola. Las zonas globulares unen ATP e interaccionan con los microtúbulos con una orientación determinada, mientras que las colas se unen a las cargas que han de transportar. La cola es lo que determina qué elemento es el transportable.

  • Constituyen el uso mitótico. Al comienzo de la mitosis los microtúbulos citoplasmáticos forman el huso mitótico, el cual organiza el movimiento de los cromosomas, separándolos en dos lotes y distribuyéndolos en las dos células hijas.

  • Determinan la forma y polaridad de la célula. En las células alargadas los microtúbulos están alineados con el eje largo de la célula y en la mayoría de los casos su presencia es esencial para el mantenimiento de dicha forma. En las neuronas los microtúbulos se disponen a lo largo de los axones y dendritas formando una trama muy ordenada.

  • Disponen el retículo endoplasmático y el complejo de Golgi en los lugares adecuados.

  • Intervienen en la organización de todos los filamentos del citoesqueleto. Así, los microtúbulos participan en la distribución de los filamentos intermedios y de los filamentos de actina.

Aida Lorenzo Corchón

Comparte en:

Citar como

Aida Lorenzo Corchón. "Microtúbulos". asturnatura.com [en línea] Num. 498, 13/10/2014 [consultado el 4/4/2024]. Disponible en https://www.asturnatura.com/temarios/biologia/citosol-citoesqueleto/microtubulos.
ISSN 1887-5068

Top